
Towards Portable and Adaptable Asynchronous Communication for One-Sided
Applications

Min Si,∗ Jeff Hammond,† Masamichi Takagi,‡ Yutaka Ishikawa‡

∗Argonne National Laboratory, USA msi@anl.gov
†Intel, USA jeff hammond@acm.org

‡RIKEN AICS, Japan {masamichi.takagi, yutaka.ishikawa}@riken.jp

Abstract—Irregular data communication makes applications
hard to optimize because of unpredictable run-time behavior
and the high risk of imbalanced computational loads. The MPI
one-sided communication model is a portable and efficient
approach for building irregular applications on distributed-
memory systems, because the semantics of one-sided operations
provide a more natural mapping to irregular algorithms as
well as one-sided networks. The asynchronous completion of
operations is important for applications to hide the overhead of
intensive data movements within user computation. However,
most implementations of the MPI one-sided communication
model are not truly asynchronous in practice. That is, the
remote process still relies on explicit MPI calls to complete some
incoming operations that cannot be offloaded to network hard-
ware. Therefore, support of software asynchronous progress is
essential for high-performance irregular communication.

Casper is a portable and efficient process-based asyn-
chronous progress model for MPI one-sided communication
on multicore and many-core architectures. It provides flexible
core deployment and dynamic adaptive strategies to optimize
various situations of communication in user applications. In
this paper, we briefly introduce the portable and adaptable
design of Casper and demonstrate its efficient utilization by
studying a real chemistry application suite.

I. INTRODUCTION

Irregular computation commonly exists in many scientific
applications, especially in quantum chemistry and bioinfor-
matics. The irregular and unpredictable runtime behavior
makes this type of application often difficult to optimize. For
instance, application developers are increasingly looking at
ways to minimize the performance overhead coming from
the irregularity in data communication across processes and
the resulting imbalance in the computational load. In this
work, we focus on the critical communication issues in irreg-
ular applications based on MPI one-sided communication.

MPI is the de facto standard communication interface for
modern distributed-memory systems. The one-sided commu-
nication model, known as MPI RMA, is introduced in the
MPI-2 and MPI-3 standards. The RMA semantics allow one
process to access remote data located on the other process
by using asynchronous one-sided operations such as put and
get, without requiring the other process to be explicitly in-
volved in the communication. Therefore, this model provides
a more natural mapping to irregular algorithms as well as
one-sided RDMA networks. In practice, however, most MPI

implementations still heavily rely on the remote process
to make software progress in MPI stack (i.e., by making
MPI calls) and complete some incoming communication
that cannot be offloaded to network hardware. Consequently,
a process can be idle for a long time while it waits for
the completion of communication if the remote process is
busy computing outside the MPI stack. Therefore, additional
asynchronous progress needs to be implemented in software.
Unfortunately, traditional asynchronous progress approaches
cannot help many applications because of restrictions from
multithreaded MPI communication [1] or expensive over-
head of frequent system interrupts [2], [3].

Casper, as an alternative approach to traditional asyn-
chronous progress approaches, provides an efficient and
practical solution for MPI one-sided applications [4]. Casper
enables users to specify a small number of cores as back-
ground “ghost processes” on modern multicore or many-
core systems. Casper then transparently intercepts all one-
sided operations to the application processes through MPI’s
PMPI profiling interface and redirects them to the ghost
processes, thus enabling asynchronous completion of one-
sided operations without visible overhead. Figure 1 demon-
strates the operation redirection design in Casper for an
MPI accumulate operation. Moreover, Casper is carefully
designed as a PMPI-based external library of MPI; thus it
becomes a portable solution for applications running with
different MPI implementations and platforms.

P0	 P1	

COMP.	
ACC	(+=)	

MPI	call
delay reply	result	

(a) Original Accumulate

P0	 P1	

COMP.	
ACC	(+=)	

reply	result	

Ghost	
Process	

(b) Accumulate with Casper

Figure 1. Using Casper’s asynchronous progress in MPI RMA.

Casper not only supports various underlying MPI plat-
forms but also provides flexible strategies for diverse com-
munication situations in user applications. According to the
characteristics of communication, we categorize the asyn-
chronous progress demands of applications in the following
three types.

Sparse communication, where every process performs ex-
pensive computation and rarely communicates (or transfers
only small amounts of data) with others. On the one hand,
such a small amount of communication can be significantly
delayed if the target process is busy in computation and
might not be able to handle incoming data immediately.
Therefore, support of asynchronous progress is the essen-
tial key for performance. On the other hand, we want to
minimize the number of cores dedicated to asynchronous
communication in order to ensure that sufficient computing
power still remains for intensive user computation.
Dense communication, where processes frequently com-
municate with each other and perform only lightweight
computation. Although asynchronous progress may still be
beneficial, it has to occupy more processor cores in order to
avoid overaggregating the large amount of communication
handling work on a limited number of cores.
Multiphase communication, where processes coordinate
through the execution of multiple internal phases of an
application. This situation commonly exists in complex
and large-scale computational problems implemented with
the integration of multiple solvers and algorithm modules.
Because each phase may follow a different communication
pattern, we have to consider the needs of asynchronous
progress in a more fine-grained way.

Casper provides several flexible strategies to optimize all
these situations. For single-phase applications with either
sparse communication or dense communication, the user can
simply specify the appropriate core deployment of Casper
according to the workloads of communication. For complex
multiphase applications, where a fixed core deployment
may not satisfy all internal phases, the user can utilize
the dynamic adaptive mechanism of Casper to adjust the
configuration of asynchronous progress for each internal
phase at runtime.

We design two approaches for the dynamic adaptation
mechanism. One is a user-guided approach, which allows
the user to empirically enable or disable the redirection
of communication for each particular internal phase during
the application execution by passing MPI info hints at the
beginning of that phase. This approach does not involve
any overhead for adaptation, but it does require the user
to understand the performance characteristics and code con-
struction of the application. The other approach does not
require any change in application code; instead, it utilizes
the idea of self-profiling and prediction. In this approach,
we insert profiling code in every MPI call through PMPI in
Casper to dynamically track the change of communication
performance during execution. Based on the profiling data,
we can periodically predict the efficiency of asynchronous
progress redirection for the next execution period and then
reconfigure automatically.

In the next section, we showcase the efficient utilization
of Casper by studying a real chemistry application.

152.1

14.7

15.1 15.4 16.3 18.8
28.5

0
20
40
60
80

100
120
140
160
180

Original
MPI

Casper
(S1)

Casper
(S2)

Casper
(S4)

Casper
(S8)

Thread
(D)

(b) Profiling on 384 cores

COMP FOP Other

0
20
40
60
80

100
120
140
160
180

192 384 768 1536

Ti
m

e
(m

in
)

Number of Cores

(a) Strong Scaling

Original MPI Casper (S1) Thread (D)

Figure 2. Single-phase DFT task for C240 with asynchronous progress.

II. CASE STUDY: CHEMISTRY APPLICATION

NWChem [5] is one of the most widely used computa-
tional chemistry application suites offering many simulation
capabilities. NWChem is developed on top of the Global
Arrays [6] toolkit, which provides an abstraction of global
shared arrays over distributed-memory nodes. ARMCI-MPI
is its portable communication port implemented over MPI
RMA [7]. Most internal phases of NWChem utilize the
get-compute-update mode, which every process essentially
performs by varying the size of matrix-matrix multiplication
for multidimensional tensor contraction by coordinating with
others through RMA get, put, and accumulate operations.
The generic task-scheduling component nxtask assigns the
“owner” for subdomain computing tasks. It is implemented
as a single fetch and op operation (denoted by FOP).

We study two widely used modules of NWChem, the
single-phase density functional theory (DFT) and the multi-
phase CCSD(T), to evaluate the impact of different asyn-
chronous progress strategies in Casper. Specifically, we
compare Casper’s performance with that of the original
MPI without asynchronous progress support and with the
conventional thread-based approach that always statically
dedicates 50% of cores to asynchronous communication
(denoted by Thread(D)). We execute all the experiments
on the NERSC Edison Cray XC30 supercomputer 1 and
compile with Intel compiler Composer XE 2015.1.133 and
Cray MPI 7.2.1. We use NWChem version 6.3 with MKL
11.2.1 as the external math library.

A. Single-Phase DFT

Density functional theory provides a good mix of ef-
ficiency and accuracy for investigating the structural and
electronic properties of atoms and molecules. It contains
only a single internal phase in the implementation, which
follows the get-compute-update mode and utilizes nxtask
task scheduling. We measure the DFT calculation for Carbon
240 (denoted by C240) with the 6-31G* basis set.

Figure 2(a) shows the strong scaling over a varying
number of system cores. We statically specify one ghost
process on each node in Casper (denoted by Casper(S1)).
The original MPI does not scale at all because of the
significant delay in enormous blocking FOP operations in

1http://www.nersc.gov/users/computational-systems/edison/

0

20

40

60

80

100

120

140

160

240 384 768 1536 3072

Ti
m

e
(m

in
)

Number of Cores

(a) Strong Scaling
Original MPI Casper(S2)
Casper(U2) Casper(GP2)
Thread(D)

58
.9

33
.6

37
.0

46
.1

33
.4

36
.6

60
.7

23
.2

30
.7

23
.0

23
.5

24
.8

24
.7

 25
.1

 30
.1

80
.1

61
.9

34
.1

29
.6

31
.5

 33
.2

0

20

40

60

80

100

120

140

160

Original
MPI

Casper
(S2)

Casper
(S4)

Casper
(S8)

Casper
(U2)

Casper
(GP2)

Thread
(D)

(b) Profiling on 240 cores
4-index CCSD iter
(T) portion Other

Figure 3. Multiphase CCSD(T) task for Tet with asynchronous progress.

nxtask. As shown in Figure 2(b), both Casper approaches and
Thread(D) can eliminate such overhead; however, dedicating
more ghost processes in Casper degrades the computational
performance because of reduced computing powers. Simi-
larly, the thread-based approach dedicates 50% of the cores
(12 cores on Edison) to background threads, resulting in
twice as much computational overhead.

B. Multiphase CCSD(T)

We next study the “gold standard” coupled cluster with
singles and doubles and perturbative triples method, known
as CCSD(T). This is one of the most accurate coupled
cluster methods applicable to large molecules. It com-
prises four internal phases: self-consistent field (SCF), four-
index transformation (4-index), CCSD iteration, and non-
iterative (T) portion [8]. The (T) portion is an extremely
computation-intensive phase, and the others follow a dense-
communication pattern.

Although Casper with statically specified core deployment
is sufficient for single-phase DFT, it does not satisfy mul-
tiphase CCSD(T). Figure 3(a) measures the strong scale of
CCSD(T) calculation for tetracene (denoted by Tet) with the
aug-cc-pVDZ basis set. We compare both the static approach
of Casper (Casper(S2)), and the dynamic adaptive strategies
including the user-guided approach and the self-profiling
and prediction based approach, denoted by Casper(U2) and
Casper(GP2), respectively. We specify two ghost processes
in all Casper approaches. The static approach does not help
performance because it overaggregates intensive RMA oper-
ations to only two ghost processes, thus degrading the perfor-
mance of the 4-index and CCSD iteration phases, as profiled
in Figure 3(b). Such degradation can be gradually released
by utilizing more ghost processes; however, doing so also
reduces the performance of (T) because fewer resources are
used in heavy computation. The dynamic adaptation with
user guidance delivers optimal performance for all phases,
while the fully automatic self-profiling approach provides a
relatively optimized performance for each phase without any
change by the user.

REFERENCES

[1] W. Gropp and R. Thakur, “Thread-Safety in an MPI Implemen-
tation: Requirements and Analysis,” Parallel Comput., vol. 33,
no. 9, pp. 595–604, 2007.

[2] Cray Inc., “Cray Message Passing Toolkit,” http://docs.cray.
com/books/S-3689-24, Cray Inc., Tech. Rep., 2004.

[3] M. Gilge, IBM System Blue Gene Solution: Blue Gene/P
Application Development. IBM, Jun. 2013.

[4] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and
Y. Ishikawa, “Casper: An Asynchronous Progress Model for
MPI RMA on Many-Core Architectures,” in Parallel and
Distributed Processing, 2015. IPDPS 2015.

[5] E. J. Bylaska et al., “NWChem, A Computational Chemistry
Package for Parallel Computers, Version 6.3,” 2013.

[6] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global
Arrays: A Portable “Shared-Memory” Programming Model for
Distributed Memory Computers,” in ACM/IEEE conference on
Supercomputing, 1994.

[7] J. S. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy,
and V. Tipparaju, “Supporting the Global Arrays PGAS Model
Using MPI One-Sided Communication,” in IPDPS, May 2012.

[8] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero,
and A. D. Malony, “Performance Characterization of Global
Address Space Applications: A Case Study with NWChem,”
Concurrency and Computation: Practice and Experience,
vol. 24, no. 2, pp. 135–154, 2012.

